
Representative Sampling in Process Mining: Two
Novel Sampling Algorithms for Event Logs

Frederik Fonger1[0009−0000−8445−8104], Niclas Nebelung1[0009−0005−1945−9051],
Arvid Lepsien1[0000−0002−8105−382X], Milda

Aleknonytė-Resch1[0000−0003−0472−1262], and Agnes
Koschmider1,2[0000−0001−8206−7636]

1 Department of Computer Science, Kiel University, Kiel, Germany {ffo, ale,
mar}@informatik.uni-kiel.de

2 Chair of Business Informatics and Process Analytics, University of Bayreuth,
Bayreuth, Germany agnes.koschmider@uni-bayreuth.de

Abstract. Process mining allows the discovery of business processes
from an event log. However, event logs are rapidly increasing in size and
process mining algorithms struggle with the computational load when
efficient processing is required. This calls for methods that decrease the
event log size while still preserving the representativeness of the event
log. This paper presents two new algorithms for sampling event logs.
The first algorithm called RemainderPlus chooses traces from an event
log above a threshold and subsequently selects traces with underrepre-
sented Directly Follows Relations. The second sampling algorithm called
AllBehavior selects samples that have a high intersection of Directly
Follows Relations with the original event log. Usually, AllBehavior is
complemented with RemainderPlus for a more accurate sample repre-
sentation. They perform well for conformance checking and excel in cer-
tain scenarios for process discovery. Thus, both algorithms outperform
existing sampling algorithms.

Keywords: event log · sampling · algorithm · process mining · process
analysis

1 Introduction

Process mining is a form of process analytics with a focus on discovering business
processes from an event log, measuring the conformance between the as-is and
to-be process behavior and for predictive monitoring. However, the increased
volume of event log data challenges computational resources of process discovery
algorithms and conformance checking [1] [5]. Therefore, techniques which reduce
the size of the event log to be processed while maintaining event log usefulness
are necessary.

To overcome this challenge, a few sampling algorithms have been suggested [4,
13] aiming to find a representative subset of an event log. The naive approach
to randomly select a subset of an event log is not an efficient solution, although

2 F. Fonger et al.

some sampling algorithms exist following this approach [11,18]. These algorithms
particularly struggle with smaller sample sizes. Rather, algorithms which choose
a subset of an event log that still maintains utility in terms of the quality di-
mensions of process mining are required. In fact, this is still an open challenge
of existing sampling algorithms, which warrants further research. Therefore, this
paper suggest two new sampling algorithms for event logs called RemainderPlus
and AllBehavior.

Fig. 1 shows how the RemainderPlus algorithm works. The algorithm ini-
tially extracts the trace variants of an event log and sorts them by occurrence.
Then, traces are selected to be included in the sample by the following two
steps. In the first step, the occurrence of each trace variant is counted and mul-
tiplied by the sample ratio to determine the trace frequency for the sample.
In order not to exceed the sample size, the calculated occurrence of traces is
rounded down. Afterwards, the traces are added to the sample according to the
frequency of their occurrence. In the second step, a score is calculated to de-
termine the number of underrepresented and overrepresented Directly Follows
Pairs (DFPs). This means that the trace variants are ranked according to the
frequency of their occurrence. The top-ranked variant is added to the sample and
the ranking is reshuffled. This is repeated until the target sample size is reached.
The AllBehavior algorithm aims to find an event log sample that has a high
intersection of Directly Follows Relations with the original event log. Therefore,
the AllBehavior algorithm ranks the traces by its unsampled DFPs and adds
them to the sample. If there are no unsampled Directly Follows Relations left,
the AllBehavior algorithm terminates and the RemainderPlus algorithms is
used to complete the sample.

We evaluated both sampling algorithms on seven event logs (e.g., BPIC 2012
[6] and the Sepsis dataset [14], etc.). We also compared the evaluation results
with existing approaches. The evaluation results show superiority in terms of
quality measures on the sample level, like mean absolute error and coverage.
Furthermore, both sampling algorithms perform well for conformance checking
and process discovery, as the results closely match those derived from the original
log.
The remainder of the paper is structured as follows. Section 2 summarizes the
terms and notations to which we refer throughout the paper. Section 3 presents
the sampling algorithms RemainderPlus and AllBehavior. The evaluation re-
sults are described and discussed in Section 4. Related works are summarized
in Section 5. The paper ends in Section 6 with an outlook and future research
directions.

2 Preliminaries

This section first introduces the basic notations to which we will refer throughout
the paper. Subsequently, quality measures for evaluating event log samples are
summarized.

Representative Sampling in Process Mining 3

Event Log
Traces

2 × 0.5 = 1 Preliminary Sample
Traces

2 1

trace count
in log

calculated trace
frequency for sample

sample ratio

Final Sample
Traces

Ranking of unsample
traces target sample size

Fig. 1. A simplified representation of the RemainderPlus sampling algorithm applied
on an event log.

2.1 Definitions

The basic notations are based on the definitions presented in [11]. Let X be a
set. A multiset is a function M : X → N0, where for x ∈ X, M(x) denotes the
number of occurrences of x in M . Multisets can also be denoted with square
brackets, e.g., M = [ek1

1 , ek2
2 , . . . , ekn

n] where ki = M(ei) for 1 ≤ i ≤ n. B(X)
is the set of all multisets over X. For any x ∈ X, inclusion is defined as x ∈
M ⇔ M(x) > 0. Another multiset S is a subset of M if ∀x∈XS(x) ≤ M(x).
|M | =

∑
x∈X M(x) is the cardinality of a multiset. The union of two multisets

is defined as ∀x∈X(M ⊎ S)(x) = M(x) + S(x). A (finite) sequence over some set
X is a function σ : {1, . . . , n} → X with σ(i) = xi for 1 ≤ i ≤ n. The sequence
has length |σ| = n, the set of all possible sequences over X is denoted as X∗,
and two sequences σ, ρ ∈ X∗ are equivalent if |σ| = |ρ| ∧ ∀1≤i≤|σ| σ(i) = ρ(i).
The two sampling algorithms introduced in this paper are intended for control-
flow aspects of business processes where additional attributes, e.g., the duration
of executed activities are not considered. Next, an event log is defined as follows:

Definition 1 (Event log, sample). The universe of activities is denoted as
A. Let A ⊆ A be a non-empty set of activities. Then, an event log is a multiset
of sequences of activities L ∈ B(A∗). In an event log, a sequence of activities
σ ∈ L is called a trace. An occurrence of an activity in an event log is called an
event. A subset SL ⊆ L is called a sample of L, with sample ratio rL(SL) =

|SL|
|L| .

A sampling algorithm is any algorithm that takes a target sample ratio c
and and event log L as input a produces a sample SL ⊆ L. The actual sample
ratio rL(SL) should match the target sample ratio c closely. A small error range
might be expected since traces cannot be partially included in a sample. Finally,
the Directly Follows Relation, which is used as a basis of the algorithms and the
sample quality measures, is defined.

Definition 2 (Directly Follows Relation [11]). Let A ⊆ A, and let L ∈
B(A∗) be an event log. For any a, b ∈ A, the Directly Follows Relation is defined
via a >σ b :⇔ ∃1≤i<|σ| σ(i) = a ∧ σ(i + 1) = b for traces, and a >L b :⇔
∃σ∈L a >σ b for event logs. The set of all Directly Follows Pairs (DFPs) present
in an event log is defined as B(L) = {(x, y) ∈ A×A | x >L y}. fσ(a, b) = |{1 ≤
i < |σ| | σ(i) = a ∧ σ(i+ 1)}| is the frequency of a DFP (a, b) in a trace σ, and
fL(a, b) =

∑
σ∈L L(σ) · fσ(a, b) the frequency in an event log L.

4 F. Fonger et al.

2.2 Quality measures

Plenty of process discovery and conformance checking algorithms consider the
Directly Follows Relation essential [2] and various quality measures have been
suggested for them [11,18]. One common quality measure is the coverage FL(SL),
which calculates the ratio of DFPs of the original event log represented in the
sample, i.e. [11]:

FL(SL) =
|B(SL)|
|B(L)|

. (1)

Definition 3 (Truly sampled, oversampled, undersampled and unsam-
pled behavior [11]). Let A ⊆ A and L ∈ B(A∗) be an event log, let SL ⊆ L
be a sample of L, and let t ∈ R with 0 ≤ t ≤ 1 be the truly-sampled-bandwidth.
Then, we call T SL

L = {(a, b) ∈ B(L) | |ρSL

L (a, b) − rSL

L | ≤ t} the truly sampled
behavior, OSL

L = {(a, b) ∈ B(L) | ρSL

L (a, b)− rSL

L > t} the oversampled behavior,
USL

L = {(a, b) ∈ B(L) | ρSL

L (a, b) + t < rSL

L } the undersampled behavior, and
N SL

L = B(L) \ B(SL) the unsampled behavior. When context is clear, the sub-
and superscripts are omitted.

Based on this classification the percentages of truly sampled (PT), oversampled
(PO), undersampled (PU) and unsampled (PN) DFPs are calculated as:

PT =
|T |
|B(L)|

, PO =
|O|
|B(L)|

, PU =
|U|
|B(L)|

, PN =
|N |
|B(L)|

(2)

Finally, the expected and actual frequency of each DFP are defined as follows:

Definition 4 (Expected and actual DFP frequency [18]). Let A ⊆ A and
L ∈ B(A∗) be an event log, let SL ⊆ L be a sample of L with sampling rate c ∈ R.
Then, the behavior of L is B(L) = {b1, b2, . . . , bn} ⊆ A×A with n = |B(L)|. The
expected DFP frequency for a DFP bi = (x, y) is defined as ei = fL(bi) · c and
the actual DFP frequency in the sample as si = fSL

(bi)

Relying on these definitions, a common statistical measure comparing the two
distributions – the mean absolute error (MAE) – is calculated as follows [18]:

MAE =
1

n

n∑
i=1

|si − ei| (3)

In our evaluation we also used further measures which are available online
(GitHub3) like the normalized mean absolute error, coverage, the normalized
root mean square error, the symmetric root mean square percentage error, the
mean average percentage error and the symmetric mean average percentage er-
ror. For reference see Van der Werf et al. [18].

3 https://github.com/Frederik-Fonger/Sampling_RP_AB_2024

https://github.com/Frederik-Fonger/Sampling_RP_AB_2024

Representative Sampling in Process Mining 5

3 Method

This section presents two new algorithms for sampling event logs. RemainderPlus
sampling aims to optimize the representativeness of a sample, while AllBehavior
sampling aims to generate a sample with a high coverage. The code for both al-
gorithms can be found on GitHub3.
Algorithm 1: RemainderPlus sampling
Data: L ∈ B(A) with A ⊆ A, c ∈ (0, 1], Sinit ⊆ L
Result: SL ⊆ L
// First phase: initialize preliminary sample
Sp ← [σ⌊L(σ)·c⌋−Sinit(σ) | σ ∈ L ∧ ⌊L(σ) · c⌋ − Sinit(σ) ≥ 1]
// Second phase
while |Sp| < ⌊|L| · c⌋ do

F̂ ← ∅
for σ ∈ L do

fe ← L(σ) · c− Sp(σ) // Remaining expected variant
frequency
sgn ← 1 if fe ≥ 0 else − 1

f̂ ← sgn · ⌊10 · (|fe| − ⌊|fe|⌋)⌋ // Signed first decimal
F̂ ← F̂ ∪ (σ, f̂)

end
Λ← argmaxσ∈L rem(σ) with ∀((σ, f̂) ∈ F̂) : rem(σ) = f̂

∆norm ← ∅
for λ ∈ Λ do

nU ←
∑

b∈B(λ)∩USp
L

fλ(b) // Frequency of undersampled

Directly Follows Relations
nO ←

∑
b∈B(λ)∩OSp

L

fλ(b) // Frequency of oversampled

Directly Follows Relations
δnorm ← nU−nO∑

b∈B(λ) fλ(b)
// Normalized difference

∆norm ← ∆ ∪ (λ, δnorm)

end

Sp ← Sp ⊎ argmaxλ∈Λ normdiff (λ) with ∀((λ, δnorm) ∈ ∆norm) :
normdiff (λ) = δnorm

end
return Sp

3.1 RemainderPlus Sampling

The RemainderPlus algorithm aims to maintain the original event log’s trace
and behavior distribution, ensuring a representative sample. First, the occur-
rence of each trace variant is counted and multiplied by the sample ratio to

6 F. Fonger et al.

determine the trace frequency for the sample. To avoid exceeding the sample
size, the calculated frequency of traces for the sample is rounded down. After-
wards, the traces are added to the sample according to the frequency of their
occurrence. When determining a preliminary sample, the expected frequencies
are adjusted by subtracting the frequencies of variants already included in the
preliminary sample. Next, the remaining variants are ranked based on the first
decimal place of their expected frequencies relative to the original event log,
considering that all expected frequencies are less than one. If two variants have
the identical first decimal place, a secondary ranking criterion is applied. This
criterion calculates and normalizes the difference between the number of already
oversampled and currently undersampled DFPs in each variant. The variant with
the highest ranking according to these criteria is then added to the sample. This
ranking process is repeated, with the rankings reshuffled each time, until the
target sample size is achieved. The pseudo code is provided in Algorithm 1.

3.2 AllBehavior Sampling

The second algorithm, AllBehavior sampling, aims to maximize the coverage
of the final sample, i.e., it aims to cover as many DFPs of the original event log
as possible. This algorithm follows two phases. Firstly, the variants are ranked
by the cumulative frequencies of still unsampled DFPs. These are normalized by
trace length to avoid a bias of traces with repeated DFPs due to loops. Next, a
trace variant with the highest rank is added to the sample. This is repeated until
there are no unsampled DFPs left. When the AllBehavior algorithm reaches
optimal coverage (i.e., all DFPs are in the sample) but has not met the tar-
get sample size, it terminates and RemainderPlus sampling (see Section 3.1) is
applied to complete the sample. If trace coverage is more essential than repre-
sentativeness, then the AllBehavior sampling algorithm is a better alternative
to the RemainderPlus algorithm. The pseudo code is provided in Algorithm 2.

4 Evaluation

To evaluate our sampling algorithms, we used seven event logs from the BPM
community (see Table 1) and compared the results to three other sampling algo-
rithms, namely, random, stratified and C-min [4] sampling. We only considered
these three algorithms, because they do not need a discovery model prior to
sampling. Therefore, we follow our goal to provide sampling algorithms for the
general use in process mining including process discovery. We generated samples
with target sampling ratios of c ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8} for each of the seven event logs. We used the quality measures as
presented in Section 2.2 for the first part of the evaluation (Section 4.1). Follow-
ing this, we evaluated the algorithms for conformance checking (see Section 4.2)
and process discovery (see Section 4.3). We used the F1-score to evaluate the
models [17]. For non-deterministic (random and stratified) samplings, we re-
peated the sampling four times and calculated an average of the quality mea-
sures.

Representative Sampling in Process Mining 7

Algorithm 2: AllBehavior sampling
Data: L ∈ B(A) with A ⊆ A, c ∈ (0, 1], Sinit ⊆ L
Result: SL ⊆ L
// First phase
Sp ← [] // Initialize preliminary sample
while NSp

L ̸= ∅ do // See Def. 2
if |Sp| = ⌊|L| · c⌋ then

return Sp

else
σmax ← argmax

σ∈L

1
|σ|

∑
b∈NSp

L
∩B(σ)

fσ(b)

Sp ← Sp ⊎ σmax

end
end
// Second phase

return RemainderPlus(L, c, Sp)

4.1 Sample Quality Measures

All evaluation results are available in the GitHub repository 4. The tables and
figures only show the results for a sample ratio of 0.3 due to space limitations.
All other results can be found in the GitHub repository. For each sampling
algorithm, we tested 84 combinations in total, stemming from 12 sample ratios
for each of the 7 event logs.

Table 1. Event logs used for the evaluation.

Name Traces
Trace

Variant
Events Activity

BPIC 2012 [6] 13087 4366 262200 24
DDLog (BPIC 2020) [7] 10500 99 56437 17
ID Log (BPIC 2020) [7] 6449 753 72151 34
Permit Log (BPIC 2020) [7] 7065 1478 86581 51
PTC Log (BPIC 2020) [7] 2099 202 18246 29
RfP Log (BPIC 2020) [7] 6886 89 36796 19
Sepsis Log [14] 1050 846 15214 16

Result Mean Absolute Error and Coverage A small MAE (Eq. 3) value
indicates a higher representativeness. RemainderPlus achieves the lowest values
for MAE for all samplings compared to existing approaches. The RemainderPlus
(Allbehavior) sampling algorithm achieved the best results in 67% (24%) of the
evaluated combinations. The performance of the other algorithms depends on

4 https://github.com/Frederik-Fonger/Sampling_RP_AB_2024

https://github.com/Frederik-Fonger/Sampling_RP_AB_2024

8 F. Fonger et al.

the properties of the event log (e.g., size, trace frequencies). For example, the
random sample nearly matches the best results in the “BPI-Challenge 2012” log,
but underperforms for the event logs “Domestic Declarations” or “Request for
Payment”. The AllBehavior algorithm achieves the highest coverage among all
evaluated event logs for sample ratios of up to 0.5. The evaluation indicates that
other sampling algorithms achieve similar coverage for sample ratio values above
0.6. Although the AllBehavior algorithm does not match the optimal coverage
at a sample ratio of 0.01, it still outperforms all other algorithms. For additional
details, see GitHub 5. The evaluation results for RemainderPlus show that it
ranks closely with other methods, usually slightly below the random sample, but
superior to both C-min and stratified sampling. All algorithms tend to produce a
higher coverage value when the sample size increases, which might be explained
by the increasing probability of rare cases occurring.

Runtime The runtime of each sampling iteration is shown in Table 2. The
computation was performed on a processor with 6 x 3.7 GHz and 16 Gigabyte
of Memory. The random and the stratified sampling both rely on a randomized
selection of traces. As a result, there is no additional calculation required for
the selection of cases. That being considered, it is expected that they have the
shortest runtime in comparison to other approaches. The increase in runtime for
the AllBehavior, RemainderPlus and C-min sampling depends on the size and
complexity of the event log to be sampled. The RemainderPlus algorithm is the
fastest of the non-randomized algorithms in 92% of the evaluated combinations.

Table 2. The runtime of sampling iterations in seconds for a sample ratio of 0.3.

AB RP Random Stratified C-min
BPIC 2012 149.8878 119.715 0.0219 0.9362 205.0922
DD Log 9.7479 9.8556 0.0120 0.2296 149.2675
ID Log 10.6056 7.7004 0.0135 0.2588 421.1549
Permit Log 29.8082 20.4941 0.0434 0.4446 35.3743
PTC Log 1.114 1.0612 0.0045 0.0900 5.5172
RfP Log 5.2101 5.3636 0.0107 0.1927 36.8803
Sepsis Log 2.1732 2.2789 0.0037 0.2045 3.7131

4.2 Sampling for Conformance Checking

To evaluate the sampling methods for conformance checking, the process model
was discovered from the original event log and conformance checking was ap-
plied with and without sampling. We applied process discovery with the miner-
threshold of t ∈ {0, 0.2, 0.4, 0.6, 0.9}. This evaluation was done for the afore-
mentioned 84 combinations, resulting in 420 combinations. Conformance check-
ing was also applied for the original event log to have a baseline. A score for
5 https://github.com/Frederik-Fonger/Sampling_RP_AB_2024

https://github.com/Frederik-Fonger/Sampling_RP_AB_2024

Representative Sampling in Process Mining 9

comparing the sample algorithms was calculated by dividing the F1-score when
sampling was applied by the baseline F1-score of the original event log, which
we denote as λf1 = | f sample

1

fmioriginallog
1

− 1|. From here, we present the data for a sam-
ple ratio of r = 0.01 in the tables, as the differences for process discovery and
conformance checking are more significant for smaller sample ratios. All results
for other sample ratios can be found in the GitHub 3. Overall, AllBehavior
outperforms all other algorithms in terms of keeping the F1-score consistently
close to the baseline. This is obvious since the algorithm focuses on high coverage
and retaining the DFPs for smaller sample ratios (see Sec. 4.1). Most algorithms
retain results close to the baseline for sample ratios larger than r = 0.05, as
shown in Fig. 2. The RemainderPlus algorithm mostly achieves the second best
results, as shown in Table 3. For the small sample ratio of r = 0.001, all algo-
rithms significantly deviate from the baseline. The decreased processing time for
the conformance checking calculation is significant. E.g., for the Permit Log, the
calculation time decreases from 55 seconds on the original log to 23 seconds on
a sample with r = 0.5 and to 1.9 seconds on a sample with r = 0.01.

Table 3. F1-score ratio λf1 between the sample and original log, with both F1-scores
calculated against the model discovered from the original log (sample ratio r = 0.01,
inductive miner with threshold set to 0)

AB RP Random Stratified C-min
BPIC 2012 0.1478 0.2196 0.0948 0.1320 0.1325
DD Log 0.0219 0.1590 0.2275 0.1575 0.2090
Permit Log 0.1667 0.3833 0.3709 0.4159 0.3860
ID Log 0.0573 0.2695 0.2652 0.2853 0.2954
PTC Log 0.2957 0.3698 0.3735 0.4055 0.4486
RfP Log 0.2024 0.2175 0.3269 0.2358 0.4221
Sepsis Log 0.6118 0.6187 0.6274 1.0000 0.6621

4.3 Sampling usage for Process Discovery

To evaluate the sampling algorithms for process discovery, the inductive and
heuristic miners are applied to every sample. Afterwards, conformance checking
is applied to the original event log. The score is calculated by dividing the con-
formance checking results through the results from the original event log (λf1).
Due to runtime constraints, we only evaluated process models for 5 of the 7 event
logs, as we stopped the conformance checking calculation for these models after
48 hours. Therefore, the number of combinations decreased for this setting to
300 combinations. The results are shown in Table 4. The results vary depending
on the configuration and event log quality. For example, for the International
Declarations log, AllBehavior sampling is able to reach an equal F1-score to
the baseline until a sample ratio of r = 0.05 (Fig. 3). With smaller sample ratios
it still remains close to the baseline. On the other hand, for the Request for

10 F. Fonger et al.

Fig. 2. F1-score ratio λf1 between the
sample and original log with both F1-
scores calculated against the model dis-
covered from the original log (Domestic
Declarations log, models discovered us-
ing the inductive miner with threshold
set to 0)

Fig. 3. F1-score ratio λf1 between the
model discovered from the sample and
the model from the original log, with
both F1-scores calculated against the
original log (International Declarations
log, models discovered using the induc-
tive miner with threshold set to 0)

Payments log, the results are not fully convincing. Overall, in 66 % of the tested
combinations, AllBehavior sampling’s F1-score was closest to the baseline.

Table 4. F1-score ratio λf1 between the model discovered from the sample and the
model from the original log with both F1-scores calculated against the original log
(sample ratio r = 0.01, inductive miner with threshold set to 0)

AB RP Random Stratified C-min
DD Log 0.3406 0.1078 0.1068 0.1378 0.6575
Permit Log 0.0644 1.034 0.9953 0.5118 0.5709
PTC Log 0.0384 1.7245 1.6028 2.9022 3.0264
RfP Log 0.3795 0.8021 0.0859 0.6859 0.5423
ID Log 0.1155 0.9129 0.7448 1.0847 1.0849

5 Related Work

Different random sampling approaches have been evaluated in the literature
[4,11,13,18]. The C-min sampling algorithm aims to optimize the earth mover’s
distance between the original log and the sample [4]. The log-rank algorithm
uses a graph-based ranking model for sampling, however, due to the lack of
code availability it is not included in our evaluation [13]. Therefore, we com-
pared RemainderPlus and AllBehavior against random sampling and C-min
sampling algorithms and discussed the results above. However, to the best of
our knowledge, no structured approach exist to compare sampling algorithms.
While some algorithms compare metrics of event logs [4,11], others consider the
process model as the indicator for quality [13]. Also, a direct comparison of ex-
isting approaches is difficult since the approaches were not evaluated using the

Representative Sampling in Process Mining 11

same sample sizes [4,10,11,18]. To overcome these shortcomings in existing sam-
pling evaluations, we evaluated the algorithms based on plenty of configurations
to demonstrate the efficiency of our two algorithms. Sani et al. propose using
different sampling approaches depending on the quality of event logs and use
cases [16] as well as evaluate different sampling strategies [8, 9, 15].

Sampling strategies have also been suggested for conformance checking [3,
10]. In [10], the authors suggest a conformance checking sampling algorithm
that takes a log and a model as input and applies relevance-guided sampling of
event logs [10] to decrease runtime processing. The approach of [3] decreases the
runtime of optimal alignments. Additionally, Bauer et al. found that a subset of
a log, sometimes with a size below 1% of the original log, is enough to assess its
quality while significantly reducing processing times [3]. Therefore, the size of a
representative subset depends on the complexity of the log [3].

6 Conclusion

This paper introduces two novel event log sampling algorithms, RemainderPlus
and AllBehavior. While RemainderPlus focuses on optimizing the representa-
tiveness of the sample, AllBehavior aims to maximize coverage. Both algorithms
select traces for sampling deterministically, which means that the results are re-
producible and not random. The evaluation results show that RemainderPlus
outperforms existing algorithms in terms of sample representation to the origi-
nal event log by demonstrating lower error values for MAE. It is therefore well-
suited for general application where representative samples are required. The
AllBehavior algorithm consistently produces samples with high coverage, but
trades enhanced coverage for trace distribution accuracy. This trade-off is espe-
cially evident for smaller sample sizes. Surprisingly, while RemainderPlus per-
forms better on the individual algorithm metrics on the model level, AllBehavior
outperforms RemainderPlus for process discovery and conformance checking ap-
plications. This is most probably because AllBehavior focuses on covering as
much behavior as possible. Generally, the evaluation results indicate different
significance for process discovery and conformance checking for smaller sample
ratios. The results for process discovery show that AllBehavior is more appro-
priate.

Potential validity threats to our methods and evaluation include the risk of
overfitting from testing on specific event logs, which we countered by using a wide
range of sample sizes and event log characteristics. Also, challenges arose with
respect to a comparative analysis against existing approaches since some code
implementations are not accessible. A promising direction for future research
might be a holistic combination of sampling techniques that can be individually
adjusted based on the characteristics of the event log and some specific require-
ments imposed by the data analysis. Both algorithms presented in this paper
promise a more efficient analysis of large event logs for process mining, which
allow novel insights in disciplines with high volume of data [12].

12 F. Fonger et al.

Acknowledgments. This project has received funding from the Federal Ministry
for Economic Affairs and Climate Action under the Marispace-X project grant no.
68GX21002E and the State of Schleswig-Holstein under the Datencampus project grant
no. 220 21 016. The project ProcessPig is funded by the European Union within the
framework of the European Innovation Partnership (EIP-AGRI) and the state program
rural areas of the state Schleswig-Holstein (LPLR) (www.eip-agrar-sh.de).

References

1. van der Aalst, W., et al.: Process Mining Manifesto. In: BPM 2011 Workshops.
LNBIP, vol. 99, pp. 169–194. Springer, Berlin, Heidelberg (2012)

2. van der Aalst, W.M.: Foundations of process discovery. In: Process Mining Hand-
book, pp. 37–75. Springer, Cham (2022)

3. Bauer, M., van der Aa, H., Weidlich, M.: Sampling and approximation techniques
for efficient process conformance checking. Inf. Syst. 104, 101666 (2022)

4. Bernard, G., Andritsos, P.: Selecting Representative Sample Traces from Large
Event Logs. In: ICPM 2021. pp. 56–63. IEEE, Eindhoven, Netherlands (2021)

5. Carmona, J., van Dongen, B., Weidlich, M.: Conformance checking: foundations,
milestones and challenges. In: Process Mining Handbook, pp. 155–190. Springer,
Cham (2022)

6. van Dongen, B.: Bpi challenge 2012 (2012), https://data.4tu.nl/articles/
dataset/BPI_Challenge_2012/12689204

7. van Dongen, B.: Bpi challenge 2020 (2020), https://data.4tu.nl/collections/
_/5065541/1

8. Fani Sani, M., Van Zelst, S.J., Van Der Aalst, W.M.P.: The Impact of Event Log
Subset Selection on the Performance of Process Discovery Algorithms. In: ADBIS
2019, CCIS, vol. 1064, pp. 391–404. Springer, Cham (2019)

9. Fani Sani, M., van Zelst, S.J., van der Aalst, W.M.P.: The impact of biased sam-
pling of event logs on the performance of process discovery. Computing 103(6),
1085–1104 (2021)

10. Kabierski, M., et al.: Sampling what matters: Relevance-guided sampling of event
logs. In: ICPM 2021. pp. 64–71 (2021)

11. Knols, B., van der Werf, J.M.E.M.: Measuring the Behavioral Quality of Log Sam-
pling. In: ICPM 2019. pp. 97–104. IEEE, Aachen, Germany (2019)

12. Koschmider, A., et al.: Process Mining for Unstructured Data: Challenges and
Research Directions. In: Modellierung 2024, pp. 119–136. GI, Bonn (2024)

13. Liu, C., et al.: Sampling business process event logs using graph-based ranking
model. Concurrency Computat.: Pract. Exper. 33(5), e5974 (2021)

14. Mannhardt, F., Blinde, D.: Analyzing the Trajectories of Patients with Sepsis using
Process Mining. In: RADAR+EMISA 2017, Essen, Germany, June 12-13, 2017. pp.
72–80. CEUR Workshop Proceedings, CEUR-WS.org (2017)

15. Sani, M., Van Zelst, S., Van Der Aalst, W.: Improving the performance of process
discovery algorithms by instance selection. Comp. Sci. Inf. Syst. 17(3), 927–958
(2020)

16. Sani, M.F., et al.: Event Log Sampling for Predictive Monitoring. vol. 433, pp.
154–166 (2022)

17. Van Der Aalst, W.: Process Mining. Springer Berlin Heidelberg, Berlin, Heidelberg
(2016)

18. Van Der Werf, J.M.E., Polyvyanyy, A., Van Wensveen, B.R., Brinkhuis, M., Rei-
jers, H.A.: All that glitters is not gold: Four maturity stages of process discovery
algorithms. Inf. Syst. 114, 102155 (2023)

www.eip-agrar-sh.de
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
https://data.4tu.nl/collections/_/5065541/1
https://data.4tu.nl/collections/_/5065541/1

	Representative Sampling in Process Mining: Two Novel Sampling Algorithms for Event Logs

